
The ontology engineering process

Johannes Kinzig

Frankfurt University of Applied Sciences
johannes kinzig@icloud.com

Abstract. When Tim Berners-Lee started to develop the semantic web
in the 1990s the general aim was that computers should ”understand”
the meaning or sense behind the content they were delivering. The over-
all purpose was to deliver the content which was requested by the user,
faster and with a higher accuracy regarding the search terms. This was
achieved by defining meta-data for contents and linking the meta-data.
In the former described scenario - the semantic web - it was mainly meta-
data for webpages. When the user was searching for a specific topic the
search engine was able to parse the meta-data and also resolve the ref-
erences which were given inside the meta-data (which linked to other
corresponding meta-data). Then the user was provided with more rele-
vant and significant content for his search.
Defining descriptive content is named ontology and was then adapted for
describing other processes, applications or domains. The term ontology
engineering then was established and describes the process for making
up ontologies and complete ontology graphs for processes and applica-
tions. Thereby ontology engineering is not limited to technical processes
or a special kind of data.
This paper describes the engineering process when developing an ontol-
ogy or a complete knowledge system. The ontology engineering process
will then also be compared with the technical engineering- and the soft-
ware engineering lifecycle.
In addition, this paper will focus on the methods of gathering knowledge
from different sources and on some modelling techniques. Software tools
will be introduced shortly at the end but will definitely not form the
main part of this scientific paper.

1 Introduction

The terms ontology and semantics were mainly affected in the 1990s when Tim
Berners-Lee came up with the idea of categorising information on the world wide
web in a way that machines were able to ”understand” the context and content
of the information they were delivering.
The world wide web as it is known today was not yet existing as the www and
information was mainly stored internally by several companies and institutes.
The storage format used by the companies was often not compatible and there-
fore disallowed an easy exchange of documents and data between companies.
Therefore the need for a global and structured information database was discov-
ered. Information was electronically available and users were able to retrieve the



information but the content was not interlinked to each other. The experienced
user was able to understand the content and could link it to it’s needs but the
computer – which was delivering it – didn’t. Therefore a search on an information
database or network was complicated and time consuming because information
was not automatically sorted and presented regarding its relevance for the search
terms. This meant being confronted with lots of information, relevant and irrel-
evant information in the same manner and with the same probability. The user
then had to go manually through the search results and decide which article or
topic is relevant in his search context and which is not. [5, p. 10, 11]
From this time on categorising and interlinking information and content on the
world wide web was needed. Possible solutions for achieving this could be

1. kind of artificial intelligence
2. defining descriptive methods for the content

The idea behind (1) was to use methods from artificial intelligence which scans
the information and performs a categorisation and linking between the informa-
tion. The AI would then build a network of information and interlinking them in
a way a computer can ”understand” and a human can read. Then providing the
user with relevant information regarding its search terms seems to be far easier
part. The network can be parsed by the computer and regarding the users search
terms the information is displayed according to the ”network of information”.
Until now the sciences of artificial intelligence makes more and more progress
but scanning a human readable content and classifying like a human would do
still seems to be an unsolvable problem. [5, p. 11]
(2) proposes a classification by the user or rather the author of information.
The author then classifies his information and interlinks it to other data sources
whose authors already performed the classification and linking in a similar way.
The storage of the descriptive information for a corresponding content is then
also performed in a structure or a graph which machines can read and transform
in a way such that a human can read and interact with it. This method is nowa-
days very common, the payload is described by data in a special way which is
named meta-data. This method was developed in the the 1990s and was named
Semantic Web, because at this time it was mainly used for the world wide web.
Nowadays this method is used in much more domains than just the web to clas-
sify and categorise data or information. Additional examples where ”semantic
web” technologies are used is setting up and maintaining knowledge systems,
cognitive intelligent systems, machine learning, etc. [5, p. 12]

1.1 Applications making use of semantic web technologies - Flickr

Describing the content or payload of data is nowadays a common task and is
mainly performed automatically. For instance the social media platform for pho-
tographers Flickr (https://www.flickr.com) relies on this method. When the
photographer is taking a picture with a digital camera, the camera takes the foto

https://www.flickr.com


and stores it with additional meta-data like camera type and model, aperture,
zoom level, what kind of lens was used, time and date, geographical location etc.
When the photographers are publishing their photos on Flickr, the platform is
parsing the meta-data and suggests fotos to other users based on e.g. the camera
type or geographical location.
The scenario described above is just a general example how social media plat-
forms make use of the semantic web technologies and just describes the basic
workflow roughly visible to the user. For developers Flickr offers APIs, proto-
cols and interchange data formats to retrieve meta-data for pictures to allow
application programmers to make use of and link to Flickr’s database. [1, p. 80]

1.2 Prerequisites for semantic web applications

As already described above the prerequisites for developing or using semantic
web applications is a meta-data format which is readable by machines. Addi-
tionally it is necessary to provide consistent and open standards because this
is responsible for exchanging information between several applications or plat-
forms. Beside this, the standard should be closed for modification and open
for extension to allow the homogeneous integration with future applications or
standards. This aim was achieved by the W3C (World Wide Web Consortium,
https://www.w3.org) which developed standards like RDF(S) and OWL as lan-
guages with the main aspect for specifying and interlinking data. These kind of
languages are known as ”ontology languages”. [5, p. 11]

2 Ontology Engineering

In section 1 was described that ontologies and semantic web technologies are
nowadays used in far more applications than just on the WWW. Modelling
processes or knowledge systems can be done in nearly every science. In medicine
it can be modelling a disease, allergy or in juristic sciences modelling cases
and their dependencies seems to be a common task. This leads to the point that
someone is needed who can engineer models for a special semantic when required
by a certain science. This is named ”ontology engineering” and is definitely not
equal to ”Software Engineering” or ”Technical Engineering” but the engineering
processes between the engineering disciplines can be seen as quite similar. They
share the ability to create a complex system which needs to work reliably. So
looking at the process an engineer needs to follow seems to be good starting
point for diving into ontology engineering. [6, p. 307]

2.1 Software Engineering Process

As discussed above - before diving into ontology engineering - a short intro-
duction of the software engineering process seems to be a good start. Software
engineering is today a very advanced engineering discipline. Depending on the
purpose of the software which is going to be developed a special development

https://www.w3.org


mode and afterwards model should be chosen. In this case - as it only acts as
short introduction - the steps occurring in the waterfall model are introduced.
This allows to get an overall impression of the software engineering process. The
waterfall model is used when developing safety-critical-systems and demands a
relativ static approach. The opposite models are agile models which are mainly
consisting of the same steps but are used in a more cyclic manner. (Compare
steps described in [4, p. 90] as a static model with steps described in [4, p. 104] as
an agile model. Both procedures have different approaches but containing steps
are quite similar.) [4, p. 88, 90]
The main steps which have to be covered are:

1. System Requirements
2. Software Requirements
3. Analysis
4. Program Design

5. Coding

6. Testing & Integration

7. Operations

The mentioned steps (1), (2) and (3) mainly concentrate on doing a require-
ment analysis. At first about the overall system, then the derived system re-
quirements for the software which then become the software requirements. This
is followed by the analysis about how to implement and designing the software.
Steps (4) and (5) are the consequence of the previous steps, (4) is about making
up an architecture for the software module and (5) is the technical realisation,
the actual software coding.
The then followed step is (6) testing the system software and integrating the
system into its context. The last step (7) is the usage of the system. [4, p. 91, 92]

2.2 Ontology Engineering Process

In this section the engineering process for a knowledge system will be described.
It is important to mention that before the actual requirement analysis can take
place some preconditions have to be decided. This is the modelling formalism,
such as the technical storage and the organisation of the knowledge. Should a
semantic approach be used or rather a relational or object-oriented database? If
a semantic approach is used then a decision about the language must be made
(RDFS, OWL, OWL2). If the amount of data to be stored is large compared to
the expressive formalism, RDF (Resource Description Framework) seems to be
a good idea, if it is the opposite case (less information to be stored but more
expressive means of representation required) OWL seems to be the right choice.
This procedure is also described in figure 1. After deciding about the modelling
formalism, the requirements can be specified.

Preconditions and Requirement Analysis As already described above, the
aim of ontology engineering is the transformation and storage an a computer
”understandable” form. Therefore it must be clarified where the information can
be taken from and based on this source the formalisation process is different.



Fig. 1. Pre-analysis for ontology engineering [6, p. 308, 309]

Generally the source of information can be distinguished between ”human”,
”unstructured”, ”semi-structured” and ”structured”.
Basically, there is not a ”straight-way-to-follow” when modelling a system to
build an ontology but there exist some modelling patterns which can improve
the workflow. They will be described in section 2.3

Gathering knowledge from human sources A ”domain expert” is a person
which is an expert in the domain which is to be modelled for the knowledge
system. The main issue is that the domain expert most likely will be unable
to formulate his knowledge in a format that can directly be used for formal
information representation (or the kind of formal representation the modelling
language requires). This is the reason why a ”knowledge engineer” is required.
The knowledge engineer has excellent communication skills and knows the for-
mal representation the ”knowledge” has to be stored in. He will then perform
interviews with the domain expert to gather all the necessary information and



transforms it into the representation required by the modelling language. To
reduce the risk of misunderstandings between the expert and the engineer, feed-
backs and double-checking is required to ensure a high-quality knowledge system.
Another possibility would be to use machine learning technologies or interactive
methods where the expert is actively asked to categorise or classify data. [6,
p. 310, 311]

Gathering knowledge from textual resources - unstructured sources
Another method to gather knowledge is using textual resources such as books,
magazines and professional journals, etc. The main issue which the ontology
engineer has to cope with is the fact that texts, written in natural languages,
are accessible by humans only. The interpretation of a text is often dependent
on the grammatical structure of the sentences and mostly requires background
information to understand the logical meaning correctly.
Automatically extracting information out of texts which are written in a natu-
ral language is still a hard problem which cannot be solved initially. Therefore
methods exists which allow automatic text analysis. Based on the outcome of
these methods the logical meaning and information can be closely reconstructed
and then transformed into the representation which is required by the knowledge
system. One method is statistical analysis of a text. The grammar is not taken
into account, word occurrences are counted and other frequencies are measured.
This gives only a rough information what a text is about, but there are cases
where this is far enough.
Another approach is ”parsing” which implies that a text is grammatically anal-
ysed in a specific procedure of steps such as part-of-speech tagging, named entity
recognition, chunking, word-sense disambiguation. When finishing such an anal-
ysis the outcome is a structured representation of the grammatical composition,
such as a parse tree. Depending on the parser the parse tree is different and may
contain errors because the meaning in a natural language is mainly dependent
on pronouns. [6, p. 312, 313]
The next step is the ”formalisation”, the linguistic structure is transformed into
a logical description. The main conception is based on the assumption that
the meaning of a sentence (in a natural language) is based on the meaning of
its components. Additionally the grammatical structure of the sentences gives
the information about how to combine the partial meanings of the ”words” to
a global meaning of the sentences. Therefore it seems plausible to infer from
the grammatical structure to a logical interdependence. This is technically per-
formed by converting the parse tree of a sentences by applying transformation
rules. The outcome then can be (dependent on the kind of formalism needed) an
OWL statement, an expression in first order logic (FOL) or something similar
which describes a formal relationship between entities. Nevertheless it is likely
that the meaning is not flawlessly extracted because some pronouns have am-
biguous meanings or the tenses of verbs may have big influence on the logical
interpretation of the sentence. To circumvent these issues it would be possible
to use a controlled language which allows only normalised words or verbs in its



infinitive form. The temporal information is then lost but there exists no best
practice to store these information in an ontology language anyway.
Additionally it is important to integrate the knowledge with lexical background
information. Communication in a natural language is quite trivial because ev-
erybody has some basic lexical background knowledge like the ”existence of
family structures and the relationship between the family members”. When
automatically parsing a text a flawless interpretation is possible only when
explicitly providing the lexical background knowledge. This can be realised
by using thesauri like WordNet which is a popular database for this purpose
http://wordnet.princeton.edu. [6, p. 314, 315]

Gathering knowledge from the www - semistructured sources Extract-
ing knowledge out of www sources is a comparatively simple task because the
information is already linked somehow. Hyperlinks between resources like arti-
cles or webpages provide a general structure about the information pieces. This
structure can directly be transformed in the desired formal representation (OWL,
RDF, etc.). Information is captured mainly on a meta-level: which file types are
just, who is the creator, the publisher of a specific content. mp3 files offer id3tags
for meta data storage, the same do jpg files (compare section 1.1) and a lot more
file types. Additionally some of the content of the ”human-read-only” resources
can nowadays be analysed automatically like face recognition on fotos or music
title identification (https://www.shazam.com). [6, p. 315, 316]

Gathering knowledge from databases - structured sources The knowl-
edge which is already stored in a structure requires less work to integrate in
its own knowledge system. Information from a relational database can easily be
transferred into an OWL or RDF resource. There it is only important to analyse
the database beforehand and to decide how to transform a row/table to an OWL
statement. The same applies for the schema information which may deliver use-
ful relationship information and can then be used for generating terminological
axioms.
Another resource for knowledge are other already existing ontologies. These may
be reused partially or fully depending on the grade of granularity. Using and ex-
tending an already existing ontology is also far easier than starting from scratch.
[6, p. 316, 317]

2.3 Modelling ontologies

Modelling the ontology can be a quite challenging task because there exist no
”right” or ”wrong” way to model. There exist some rules and conventions the
engineer is advised to follow; these will be discussed in the following.
The general approach when beginning the modelling or checking an existing
model is to verify the model against the ”real world”, that is the domain the
ontology was developed for. Are the consequences logically following from the
reality or are they contradictory. When this is decided one can use a Reasoner

http://wordnet.princeton.edu
https://www.shazam.com


to do a model checking. The purpose and the functionality of a reasoner will be
discussed in section 3.2. Of course the before mentioned approaches can only be
used in the context of a real application but there exist some techniques that
can be initially followed.

1. Logical Criteria
2. Structural and Formal Criteria
3. Accuracy Criteria
4. Disjointness
5. Quantification and Quantifiers

6. Part and Subclass Identity

7. Subclasses and equivalent classes

8. Translate loosely from natural lan-
guages

(1) deals with the characteristics which can be directly checked on a logical
level based on the model.
Inconsistency: An ontology is called inconsistent if there is not a correct map-
ping between the ”real world” and the model. The issue is that an inconsistent
ontology follows statements as logical consequences but cannot be used for auto-
mated deduction. (A class is called inconsistent/unsatisfiable if it is interpreted
as an empty set in the model. This is not an issue as long as no instance is added
to the class.)
Coherency: An ontology does not contain unsatisfiable classes. A consistent
ontology can be incoherent but a coherent ontology cannot be inconsistent.
Software tools offer automatic checking for these flaws. Incoherency and incon-
sistency can be prevented by not constraining the model enough. [6, p. 317, 318]

(2) indicates another modelling problem, kinds of taxonomic cycles inside the
structure. This behaviour may occur when using classes which have a similar
meaning in semantic, but this is rather seldom. The following example shows a
taxonomic circle:

Architecture v Faculty
Faculty v University
University v Building
Building v Architecture

To prevent such a behaviour the ontology can be checked for rigidity.
Rigidity: A class is called rigid if every member of it cannot stop being a member
without loosing existence. A class can be rigid, anti-rigid, or none-of both, addi-
tional characteristics might be Identity, Unity and dependency. [6, p. 319, 320]
Tools exist for automated ontology checking, such as reasoning tools which can
determine the set of axioms which are responsible for the inconsistency. Further
information about a semantic reasoner will be given in section 3.2.

(3) covers the accuracy and granularity of the model for the ontology; mainly
the model is verified against its ”real-world-domain”; of course this cannot be
checked automatically. Therefore it can be verified by a second ontology engineer
who can measure some characteristics like number of domain related statements,



number of classes and additionally random testing against some test specifica-
tion.

(4) demonstrates that is important to disjoint classes when needed. As an
example for a possible flaw regard the following model:

Woman v Human,Human vMan tWoman,Man v Human
Woman(Anna),Man(Steve)

Now assume the following statement: ¬Man(Anna) There is no logical reason
why ”Anna” cannot be a man and a woman but in ”real life logic” this makes not
much sense of course. To prevent this the classes ”Man” and ”Woman” have to
become disjoint which means that there is no individual existing in both classes.
[6, p. 321, 322]
(5) shows the issue when it comes to a quantification of classes and individuals.
For the ontology it is often very important to express a quantification in a ”has-
a” relation like ”a car has wheels and a motor”.

The existential quantifier(∃) is used more often than the universal quanti-
fier (∀). An indication in natural language for use of the universal quantifier∀)
can be seen when statements occur like nothing but, only, exclusively. A misap-
prehension can easily occur when looking at the following example. One wants
to express that ”a car has wheels”, then the correct translation should be
Car v ∃has.Wheels. Often the following and wrong translation is performed
Car v ∀has.Wheels but this implies that the car has only wheels (or noth-
ing). This implication is – indeed – wrong.
As a rule of thumb the following two implications can be used in most cases:

– By default the existential quantifier (∃) should be used
– The universal quantifier (∀) does not guarantee the existence of a respec-

tive rule (for all or nothing)

[6, p. 322, 323]

(6) describes the issue which may occur when mixing or not explicitly isolat-
ing subclasses and parts. The following example ([6, p. 323]) shows an example
where this misconception happened.

Finger v Hand,Hand v Arm,Arm v Body
Toe v Foot, Foot v Leg, Leg v Body

Arm u Leg v⊥
(Arm and Leg are disjoint)

This model allows to deduce Arm(myLeftThumb) because the thumb is not
only a finger it is also a hand and an arm (at least when following the above
mentioned model). In this case the subclass relation partOf was used mistakenly.
In this case the reason could have been that both subclasses share the property



of ”belonging to something”. In this case the leads to a logical inconsistence but
this can be prevented by introducing a new role e.g. partOf. This then leads to
the following corrected model:

Finger v ∃partOf.Hand,Hand v ∃partOf.Arm,Arm v ∃partOf.Body
Toe v ∃partOf.Foot, Foot v ∃partOf.Leg, Leg v ∃partOf.Body

Arm u Leg v⊥

As the rule of thumb a subclass X (of the parent class Z) can be introduced iff
the statement ”every X is always a Z” is true. [6, p. 324]

(7) is the counter part to (6) when it is hard do decide wether a class is a sub-
class or an equivalent class of another. Subclassing can be used when trying to ex-
press some characteristic about members of a class. A subclass LivingInWater
can express that a member LivingInWater(fish), in this case the fish, does
live in water. It can be seen as a necessary criterion for being a fish. Now it is
important to not imply a sufficient criterion out of this characteristic because
it is not sufficient for beeing a fish when living in water (such as a moray or
plankton also live in water but are no fish). Equivalence statements can be used
when iff a class description is necessary and sufficient. This relation could look
like this Winner ≡ Playeru∀hasCompleteCollection.Spades, a player can only
be a winner iff he is playing a game and is holding a whole collection of a spades.

(8) describes a modelling incoherency which may occur when translating to
verbally from a natural language. The simplest example can be a misunder-
standing when using ”and”; it does not always mean an intersection between to
characteristics or properties. When trying to model the statement: ”Staff mem-
bers and students of the university will get a login account”. The ”and” will be
translated into a union StaffMember t Student v ∃have.LoginAccount and
not into an intersection StaffMemberuStudent v ∃have.LoginAccount. The
intersection would express that only those will have a login account who are
students and staff members. The difference is visible in figure 2. When unsure
about the correct modelling in this position rephrasing and testing can help
getting out of the misery. [6, p. 325, 326]

2.4 Conclusion: Engineering Ontologies

In a nutshell it becomes clear that the ontology engineer is not only responsi-
ble for the technical approach, the domain specific analysis such as domain and
scope, term enumeration, property definition is as important as taking care for
a reusable ontology or knowledge system.
Beside, it is remarkable that the engineering processes (introduced in section
2.1 and 2.2) seem to have some similarities but when diving into the topic and
deciding about a procedure both disciplines evolve to be diverging. Clearly, both
disciplines have to follow a certain (given) procedure and the tasks for the pro-
cedures can clearly be defined but from the technical point of view the workflow



Fig. 2. Difference between intersection and union – students and staff members

is different.
When closely looking at section 2.3 one can notice that these recommendations
can be seen as patterns (like design patterns in software engineering). This shows
that the sciences of ontology engineering evolves (slowly) to a field like software
engineering where fixed and important principles and design recommendations
are as important as the technical implementation.

3 Software and Tools

In this section some software tools will be introduced which are helpful when
engineering an ontology and developing a knowledge system. The aim is not
to provide the reader with some tools and describing the pros and cons but to
introduce tools which support the developer by acting as a toolchain. For use in a
productive environment the tools may need to be specially configured but in this
context the prototyping and development is in the foreground so the standard
configuration seems to be appropriate.
However, the tools described below are not limited to ”develop” an ontology
they can of course be used to publish the ontology in a productive environment.

3.1 Protégé

Protégé is an open source application which supports the engineers and devel-
opers when editing an ontology. It is available as a desktop application (known



Fig. 3. Excerpt from the Protégé Desktop application showing different ontology
object hierarchies

as Protégé Desktop) or a web application (known as WebProtégé). Protégé sup-
ports the OWL 2 Web Ontology Language and allows to export the ontology for
further processing or publishing. Protégé is written in Java and offers a GUI and
graphical tools for simplifying the engineering process. Figure 3 shows excerpts
of the graphical editor, which displays ”classes, object properties, data prop-
erty hierarchies, annotation property hierarchies and individuals” of a sample
ontology. [7]

Protégé also includes a Semantic Reasoner named HermiT. More information
about what a reasoner is and how it works will be given in the following section,
3.2.

3.2 Semantic Reasoner

A semantic reasoner is a software or an algorithm which checks an ontology for
logical consequences from a given set of facts or axioms. The logical consequences
are given by interference rules which can be applied to or taken from individuals
and relations of the ontology. Most reasoners use first-order-logic to check the
ontology.

The reasoner is able to parse the ontology and apply the rules to the ontology
and its parts, relations, classes, individuals, etc. If the reasoner recognises that
an individual follows more than one behaviour which are not compatible to each



other (e.g. an individual ”Subject:Peter” is at the same time his father and
hisself) than the reasoner will throw an error. The ontology has to be changed,
the engineer has to eliminate this misconception.

Protégé includes a reasoning engine, named HermiT which performes the
tasks described above. [3]

3.3 Apache Jena

The Apache Jena is an open source framework for publishing and editing on-
tologies on the web. The software is written in Java and includes several tools:

– RDF - create and read RDF graphs, export the ontology by using RDF/XML
or Turtle

– SPARQL - querying and requesting information from the ontology
– TDB - triple store database
– Fuseki - publish the ontology over http/s, access using SPARQL, using web

browser or REST-API
– Ontology API - using RDFS to add extra semantics to the ontology
– Interference API - model checking, reasoning engine

The Apache Jena project can be seen as a powerful ontology server for dis-
tributed environments, it can index, store and query data up to millions of
triples. It can be installed as a standalone server application or as a web app
into Apache Tomcat. Interaction with the published ontologies is mainly per-
formed via the web browser or by using custom applications through the offered
REST-API. [2]

4 Summary and Conclusion

As seen in the sections before, developing an ontology or a knowledge system is
not a trivial task. Not just because of the overall complexity, additionally be-
cause no easy-to-follow rules (like design patterns in software engineering) exist.
Anyhow the introduced rules in section 2.3 can be seen as a guideline to make up
an ontology but depending on the size and complexity of the knowledge system
the whole engineering task becomes very complex. Nevertheless some good soft-
ware and tools exist which not only help the engineer while developing, at the
same time these tools offer possibilities to publish the ontologies and to allow
others to interact and extend the published knowledge system.

Protégé seems to be a helpful tool because it offers graphical interaction
with the user. Errors or misconceptions can be detected earlier and can be fixed
instantly. The included reasoner HermiT allows model checking and seems to
use a quite efficient algorithm (compare [3]).

The Apache Jena project then can be used to publish the ontology and allow
others to interact with it. The included triple store and SPARQL support are
just a few features which characterise the Apache Jena project. Ontologies are



often offered through a distributed environment, the included REST-API for
querying SPARQL commands allow to use one or mote ontologies in customised
applications.

All in all ontology engineering not only requires an ontology engineer with
good skills, also the tools have to be appropriate and have to be carefully chosen
to meet the project requirements.

A lot more tools than described above exist, but the introduced seem to offer
a good starting point when diving into the ontology development. Graphical
tools and interactions with other ontologies make life much more easier and
allow a smooth start into the topic.



References

1. Elena Simperl Ioan Toma Dieter Fensel, Federico Michele Facca. Semantic Web
Services. Number 978-3-642-19193-0. Springer Berlin Heidelberg, 2011.

2. The Apache Software Foundation. Apache jena.
https://jena.apache.org/index.html, 2016.

3. University of Oxford Information Systems Group. Hermit owl reasoner.
http://www.hermit-reasoner.com.

4. Marco Kuhrmann Manfred Broy. Projektorganisation und Management im Software
Engineering. Number 978-3-642-29290-3. Springer-Verlag Berlin Heidelberg, 2013.

5. Sebastian Rudolph Pascal Hitzler, Markus Krötzsch. Semantic Web. Number 978-
3-540-33994-6. Springer, 2008.

6. Sebastian Rudolph Pascal Hitzler, Markus Krötzsch. Foundations of Semantic Web
Technologies. Number 978-1-4200-9050-5. CRC Press, 2010.

7. Stanford Center for Biomedical Informatics Research Protege Com-
munity, Stanford Labs. Protege desktop user documentation.
http://protegewiki.stanford.edu/wiki/Protege4UserDocs, 2016.


	The ontology engineering process
	Johannes Kinzig

